

CoE-Mass weekly seminar series

THE DST-NRF CENTRE OF EXCELLENCE IN MATHEMATICAL AND STATISTICAL SCIENCES (CoE-MaSS) WOULD LIKE TO PRESENT A SEMINAR BY

Florian Luca

(School of Mathematics, Wits University)

"Diophantine m-tuples"

Friday, 12 February 2016 10h30-11h30

Broadcast live from:

Videoconferencing Facility, 1st Floor Mathematical Sciences Building, Wits West Campus

How to connect to this seminar remotely:

You can connect remotely via Vidyo to this research seminar by clicking on this link: http://wits-vc.tenet.ac.za/flex.html?roomdirect.html&key=y0SSOwFsvsidbzg4qFdWXvvQtyl and downloading the Vidyo software before the seminar.

You must please join in the virtual venue (called "CoE Seminar Room (Wits)" on Vidyo) strictly between 10h00-10h15. No latecomers will be added.

Important videoconferencing netiquette:

Once the seminar commences, please mute your own microphone so that there is no feedback from your side into the virtual room. During the Q&A slot you can then unmute your microphone if you have a question to ask the speaker.

Title:

Diophantine *m*-tuples

Presenter:

Florian Luca, School Mathematics, University of the Witwatersrand, Johannesburg, South Africa; Florian.Luca@wits.ac.za

Abstract:

A diophantine m-tuple is a set of m-positive integers $\{a_1, \ldots, a_m\}$ such that the product of any two of them plus 1 is a square. For example, $\{1,3,8,120\}$ is a Diophantine quadruple found by Fermat. It is known that there are infinitely many such examples with m=4 and none with m=6. No example is known with m=5 but if there exist, then there are only finitely many such. In my talk, I will survey what is known about this problem, as well as its variations, where one replaces the ring of integers by the ring of integers in some finite extension of \mathbf{Q} , or by the field of rational numbers, or one looks at a variant of this problem in the ring of polynomials with coefficients in a field of characteristic zero, or when one replaces the squares by perfect powers of a larger exponent, or by members of some other interesting sequence like the sequence of Fibonacci numbers and so on.

